A problem on nilpotent maps on \mathbb{R}^2

"Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator such that $T^3 = 0$. Determine whether $T^2 = 0$ and justify your answer."

(NUS Linear Algebra AP)

The answer is yes. If rank T = 0, then T = 0 and so obviously $T^2 = T^3 = 0$. If rank T = 2, then T is an isomorphism and clearly $T^2, T^3 \neq 0$. Hence it suffices to consider the remaining case rank T = 1. If $T^2 \neq 0$ then im T^2 is a nonzero subspace of the 1-dimensional subspace im T, thus

$$\operatorname{im} T^2 = T(\operatorname{im} T) = \operatorname{im} T.$$

Since T stabilises im T, so does T^2 , therefore

$$\operatorname{im} T^3 = T^2(\operatorname{im} T) = \operatorname{im} T \neq \{0\},\$$

so $T^3 \neq 0$.

Way Yan 19/9/21