Integer harmonic numbers

Theorem. The only nonnegative integers n for which H_n is an integer are 0 and 1.

(Knuth, TAOCP Vol. 1, Exercise 1.2.7.19)

Proof. The proof is motivated by the following pattern.

Notice how the numerator of each H_n is even, and the denominator has the form $2^k a$ where a is odd and k is the largest integer satisfying $2^k \leq n$. I define the twoness of H_n to be the integer k, and an n-good number to be any integer k satisfying $2^k \leq n$. Thus we can say that from the table, the twoness of H_n is the largest n-good number. Note that the twoness can also be computed using a non-reduced fractional representation: given any representation p/q of H_n where p is odd, we have $q = 2^k a$ where a is odd and k is the twoness of H_n .

I proceed via induction from $n = 2$ on the statement ' H_n can be written in the form $p/2^k a$ where p is odd, a is odd and the integer k (which is the twoness from the previous paragraph) is the largest n-good number'. Since the twoness is always ≥ 1 , the denominator $2^k a$ is even and so H_n cannot be an integer for all $n > 2$.

Start at the base case $n = 2$. The reduced form $H_2 = 3/2$ has odd numerator while its twoness, 1, is the largest 2-good number. Now suppose $H_n = p/2^k a$ where p is odd, a is odd, and the twoness k is the largest n-good number. If $n + 1$ is odd then we have

$$
H_{n+1} = \frac{p}{2^k a} + \frac{1}{n+1} = \frac{p(n+1) + 2^k a}{2^k a(n+1)}.
$$

The numerator is odd since one term is odd and one term is even, $a(n + 1)$ is odd, and the new twoness k is still the largest $(n + 1)$ -good number. On the other hand, if $n + 1$ is even then write $n + 1 = 2^lb$ where b is odd.

Case 1: $b = 1$. We have $l > k$ since $2^l = n + 1 > n$ implying l is not n-good. Thus

$$
H_{n+1} = \frac{p}{2^k a} + \frac{1}{2^l} = \frac{2^{l-k}p + a}{2^l a}.
$$

The numerator is odd, a is odd, and the new twoness l is clearly the largest integer satisfying $2^l \leq n+1 = 2^l$. Case 2: $b \geq 3$. We have $n+1 > 2^l \cdot 2 = 2^{l+1}$ implying $n > 2^{l+1}$. Thus $l+1 \leq k$ since $l+1$ is n-good. Hence

$$
H_{n+1} = \frac{p}{2^k a} + \frac{1}{2^l b} = \frac{bp + 2^{k-l} a}{2^k ab}.
$$

The numerator is odd, ab is odd, and the new twoness k is still the largest $(n+1)$ -good number, since a new power of 2 hasn't been reached yet. This completes the induction.