Integer harmonic numbers

Theorem. The only nonnegative integers n for which H_n is an integer are 0 and 1.

(Knuth, TAOCP Vol. 1, Exercise 1.2.7.19)

Proof. The proof is motivated by the following pattern.

n	2	3	4	5	6	7	8
H_n	$\frac{3}{2\cdot 1}$	$\frac{11}{2\cdot 3}$	$\frac{25}{2^2 \cdot 3}$	$\frac{137}{2^2 \cdot 15}$	$\frac{99}{2^2 \cdot 5}$	$\frac{363}{2^2 \cdot 35}$	$\frac{761}{2^3 \cdot 35}$

Notice how the numerator of each H_n is even, and the denominator has the form $2^k a$ where a is odd and k is the largest integer satisfying $2^k \le n$. I define the twoness of H_n to be the integer k, and an n-good number to be any integer k satisfying $2^k \le n$. Thus we can say that from the table, the twoness of H_n is the largest n-good number. Note that the twoness can also be computed using a non-reduced fractional representation: given any representation p/q of H_n where p is odd, we have $q = 2^k a$ where a is odd and k is the twoness of H_n .

I proceed via induction from n=2 on the statement ' H_n can be written in the form $p/2^k a$ where p is odd, a is odd and the integer k (which is the twoness from the previous paragraph) is the largest n-good number'. Since the twoness is always ≥ 1 , the denominator $2^k a$ is even and so H_n cannot be an integer for all $n \geq 2$.

Start at the base case n=2. The reduced form $H_2=3/2$ has odd numerator while its twoness, 1, is the largest 2-good number. Now suppose $H_n=p/2^ka$ where p is odd, a is odd, and the twoness k is the largest n-good number. If n+1 is odd then we have

$$H_{n+1} = \frac{p}{2^k a} + \frac{1}{n+1} = \frac{p(n+1) + 2^k a}{2^k a(n+1)}.$$

The numerator is odd since one term is odd and one term is even, a(n+1) is odd, and the new twoness k is still the largest (n+1)-good number. On the other hand, if n+1 is even then write $n+1=2^lb$ where b is odd.

Case 1: b = 1. We have l > k since $2^l = n + 1 > n$ implying l is not n-good. Thus

$$H_{n+1} = \frac{p}{2^k a} + \frac{1}{2^l} = \frac{2^{l-k}p + a}{2^l a}.$$

The numerator is odd, a is odd, and the new twoness l is clearly the largest integer satisfying $2^{l} \leq n+1=2^{l}$.

Case 2: $b \ge 3$. We have $n+1 > 2^l \cdot 2 = 2^{l+1}$ implying $n > 2^{l+1}$. Thus $l+1 \le k$ since l+1 is n-good. Hence

$$H_{n+1} = \frac{p}{2^k a} + \frac{1}{2^l b} = \frac{bp + 2^{k-l}a}{2^k ab}.$$

The numerator is odd, ab is odd, and the new twoness k is still the largest (n+1)-good number, since a new power of 2 hasn't been reached yet. This completes the induction.