
A puzzle on coin flipping

“There are 2n coins arranged on a roundtable. You have been blindfolded, so you do not know the
orientations of the coins (heads or tails). Each turn, you are allowed to flip any number of coins, but after
the turn the table will be rotated by a random angle. You win if the coins are either all heads or all tails.
(You win automatically if the initial orientations are all heads or all tails.)

Is there an algorithm to guarantee victory?”

(NUS CS1010S 2022 Sem 1, Side Quest 7.1; question phrasing is mine)

The puzzle can be viewed from a different perspective: rather than rotating the table, we will keep it
fixed. Rather, the choice of coins to be flipped is first rotated by a random amount, then the flip is applied.
In other words, the player can only choose which coins to flip, up to a rotation of the table. This observation
makes the puzzle more amenable to analysis.

Notation

The coin orientations on the ith turn can be represented as a length 2n bitstring xi. The player’s choice
of coins is represented by another bitstring ti+1, and based on our new perspective on the puzzle we have
xi+1 = xi + r(ti+1), where r is a random bitstring rotation.* The player wins if xi = 0 or 1 for some i
(where 0 and 1 are the bitstrings with all 0s and all 1s respectively). I define an algorithm to be a sequence
of bitstrings (t1, t2, . . . , tn); for it to considered a valid algorithm, victory must be achieved by turn n.

For n = 1 it is obvious that (10) is an algorithm. Already the n = 2 case is not so straightforward, but
it turns out that one algorithm is (A,B,A,C,A,B,A) or more compactly ABACABA, where

A = 1010, B = 1100, C = 1000.

Here’s a sample run where the initial orientation is x0 = 0001:

x0 = 0001, x1 = 0001 + 0101 = 0100, x2 = 0100 + 0110 = 0010

x3 = 0010 + 1010 = 1000, x4 = 1000 + 0100 = 1100, x5 = 1100 + 1010 = 0110

x6 = 0110 + 0011 = 0101, x7 = 0101 + 0101 = 0000.

Just nice, victory is achieved on the very last turn.

Cumulative effects and transversals

The ‘cumulative effect’ of the player’s first i moves is equal to the bitstring

xi − x0 = r1(t1) + r2(t2) + . . . + ri(ti), r1, . . . , ri are random rotations.

Definition. Let Pn be the set of length 2n bitstrings. A transversal of Pn is a subset T ⊆ Pn \ {0,1} such
that for all x ∈ Pn, T contains exactly one of {x,¬x}.

Lemma. If the set of cumulative effects is a transversal of Pn, then victory is guaranteed.

Proof. All we need is for one of the cumulative effects xi−x0 to be either x0 or ¬x0, so that xi = x0 + (xi−
x0) = 0 or 1. Furthermore, we know that x0 is neither 0 nor 1, otherwise the player would have already
won.

Indeed, in the sample run above the cumulative effects are (0101, 0011, 1001, 1101, 0111, 0100, 0001),
which is a transversal of P4:

0000 0001 0010 0100 1000 0011 0110 0101
1111 1110 1101 1011 0111 1100 1001 1010

The rest of the solution is devoted to inductively constructing an algorithm whose cumulative effects are
always a transversal.

* Here addition is not the usual binary addition with carrying, but rather the digitwise, mod 2 addition.
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The solution

I will introduce a crucial device, which is a tower of subsets associated with each n. Here is what the tower
looks like for small n:

n = 1 : {00, 11} ⊆ {00, 11, 01, 10}
n = 2 : {0000, 1111} ⊆ {0000, 1111, 0101, 1010} ⊆ {0000, 1111, 0101, 1010, 0011, 1100, 0110, 1001} ⊆ P2

Already the n = 3 case is too much to show, but we can define the tower recursively using some new
notation. Given two bitstrings x, y, let xy denote their concatenation, and let x2 denote xx. Given a subset
S ⊆ Pn, define S2 to be the set

{xx | x ∈ S} ⊆ Pn+1,

and S′ to be the set
{xy | x, y ∈ S and x− y ∈ S} ⊆ Pn+1.

For example, {0}′ = P 2
n and {0,1}′ = {x(¬x) | x ∈ Pn}. If S1 ⊆ S2 ⊆ . . . ⊆ Sk is the tower of subsets for n,

then the tower of subsets for n + 1 is given by

S2
1 ⊆ S2

2 ⊆ . . . ⊆ S2
k ⊆ S′1 ⊆ S′2 ⊆ . . . ⊆ S′k.

In particular the length of the tower is always doubled, and therefore k = 2n. For n = 2, we can rewrite the
tower in this form:

{00, 11}2 ⊆ {00, 11, 01, 10}2 ⊆ {00, 11}′ ⊆ {00, 11, 01, 10}′ = P2.

I can now give the outline of the solution, which builds up a transversal of Pn+1 via transversals of the
subsets in the tower.

1. By induction, assume that there is an algorithm (t1, . . . , tn) such that its cumulative effects are a
transversal of Pn. (Next time I’ll just call this a good algorithm.) Additionally assume that ti ∈ P 2

n−1
for each i. Then there is a good algorithm for P 2

n , which runs in the same number of steps.

2. Define S′0 = {0}′ = P 2
n and let S′i be as above for i ≥ 1. If there is a good algorithm for S′i running in

k steps, then there is a good algorithm for S′i+1 running in 2k + 1 steps.

Small note: for the phrase ‘good algorithm for S′i’ to make sense, the notion of a transversal of S′i has to
make sense, and this requires S′i to be closed under complements. Luckily, it is:

Lemma. S′ is closed under complements for any subset S ⊆ Pn.

Proof. xy ∈ S′ =⇒ x− y ∈ S =⇒ ¬x− ¬y = (1− x)− (1− y) ∈ S =⇒ ¬(xy) = (¬x)(¬y) ∈ S′.

Proof of 1. Let (t1, . . . , tk) be a good algorithm for Pn, where each ti is in P 2
n−1. Then I claim (t21, . . . , t

2
k)

is a good algorithm for P 2
n . Each cumulative effect has the form Ci =

∑
i ri(t

2
i ) where each ri is a random

rotation of a length 2n+1 bitstring. It is not too hard to see that ri(t
2
i ) = r′i(ti)

2 for some rotation r′i of length
2n bitstrings (since ti ∈ P 2

n−1), so we can rewrite Ci =
∑

i r
′
i(ti)

2. Since the cumulative effects
∑

i r
′
i(ti) are

a transversal of Pn, the Ci’s clearly are a transversal of P 2
n .

Proof of 2. Note that Si+1 is twice as big as Si, so S′i+1 is twice as big as S′i. For any h ∈ S′i+1 \S′i, addition
by h defines a bijection between S′i → S′i+1 \ S′i, and additionally it preserves pairs of complementary
bitstrings. For example, take the case n = 2, S′i = {00}′, h = 1100 ∈ {00, 11}′ \ {00}′. Addition by h defines
the correspondence

(0000, 1111) 7→ (1100, 0011), (0101, 1010) 7→ (1001, 0110).

Both properties are straightforward to prove: addition by h is bijective since it is its own inverse, and
complementary bitstrings are preserved since ¬(x + h) = 1− (x + h) = (1− x) + h = ¬x + h.

If A = (t1, . . . , tk) is a good algorithm for S′i, I claim that (A, h,A) is a good algorithm for S′i+1. Let
Ci =

∑
i ri(ti) be the ith cumulative effect of A. Then the cumulative effects of (A, h,A) are(

C1, C2, . . . , Ck, Ck + r(h), Ck + r(h) + s1(t1), . . . , Ck + r(h) + sk(tk)
)
,

where r is a random rotation and si are a new set of random rotations different from ri. Since (C1, C2, . . . , Ck)
are known to be a transversal of S′i, we need only show that

(
C + s1(t1), . . . , C + sk(tk)

)
is a transversal of

S′i+1 \ S′i, where C = Ck + r(h). (Note S′i+1 \ S′i is indeed closed under complements.)
Before continuing a few facts are needed.
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Lemma. S′i is a subgroup of Pn+1, i.e. it is closed under addition and inverses.

Proof. I will prove the general statement that for all n, the abovementioned tower of subsets is in fact a tower
of subgroups of Pn. It suffices to prove closure under addition, because every bitstring is its own inverse.
This is done by induction on n. For the base case n = 1, it is obvious that {00, 11} and {00, 11, 01, 10} are
subgroups of P1. The inductive step is to show that if S is a subgroup of Pn, then S2 and S′ are subgroups
of Pn+1. I leave this as an exercise for the reader.

Lemma. S′i+1 \ S′i is closed under rotation. In particular r(h) ∈ S′i+1 \ S′i.

Proof. First, we induct to show that for all n, every subset in the tower is closed under rotation. For the
base case n = 2, clearly {00, 11} and {00, 11, 01, 10} are closed under rotation. The inductive step is to show
that if S satisfy this property, then so do S2 and S′. The former follows from the fact that for every rotation
r there is some rotation r′ such that r(t2) = r′(t)2. As for the latter, WLOG let r be a left shift by one
digit. write x = x1 . . . xn and y = y1 . . . yn, and define zi = xi − yi. If xy ∈ S′, then z1z2 . . . zn ∈ S, so
z2 . . . znz1 ∈ S, and therefore r(xy) = r(x1 . . . xny1 . . . yn) = (x2 . . . xny1)(y2 . . . ynx1) ∈ S′. This completes
the induction.

Now, given x ∈ S′i+1 \S′i we must have r(x) ∈ S′i+1 (since S′i+1 is closed under rotation). If furthermore
r(x) ∈ S′i, then r−1(r(x)) = x ∈ Si where r−1 is the inverse rotation, since S′i is closed under rotation.
Therefore, r(x) ∈ S′i+1 \ S′i as desired.

Lemma. C ∈ S′i+1 \ S′i.

Proof. Otherwise r(h) = C − Ck ∈ S′i, which is not true.

Lemma. If h ∈ S′i+1 \ S′i, then addition by h sends transversals of S′i to transversals of S′i+1 \ S′i.

Proof. Let T be a transversal of S′i; we want to show h + T = {h + t | t ∈ T} is a transversal of S′i+1 \ S′i.
For each x ∈ S′i+1 \ S′i, we can write x = h+ x′ for some x′ ∈ S′i, and also we have ¬x = h+¬x′. Since

addition by h is a bijection and T contains exactly one of {x′,¬x′}, it follows that h + T contains exactly
one of {x,¬x}, as desired.

The rest of the proof falls out these lemmas. We have that
(
s1(t1), . . . , sk(tk)

)
is a transversal of S′i.

(This is different from (C1, . . . , Ck) since the rotations si are possibly different from the ri’s.) Setting h = C
in the last lemma, we can conclude that

(
C + s1(t1), . . . , C + sk(tk)

)
is a transversal of S′i+1 \S′i as desired.

Theorem. For all n, there exists a good algorithm for Pn that takes 22
n−1 − 1 turns.

Proof. The existence of the algorithm follows from the two steps. As for the number of turns, assume by
induction that the algorithm for Pn takes 22

n−1 − 1 turns.
Then the algorithm for Pn+1 is obtained by running step 2 for 2n times (since the tower for Pn+1 has

length 2n+1), and each time the number of steps increases according to the map f(k) = 2k + 1. We have

f(2a − 1) = 2a+1 − 1 for all a, so f2n(22
n−1 − 1) = 22

n−1+2n − 1 = 22
n+1−1 − 1.

Way Yan
14/9/2022

3


